Non-Statistical Based Robust Identification of a Lightly Damped Flexible Beam Using Kautz Orthonormal Basis Functions
نویسندگان
چکیده
منابع مشابه
Set Membership Identification of a Lightly Damped Flexible Beam for Robust Control
The aim of this paper is to identify the nominal model and associated uncertainty bound of a lightly damped flexible beam in order to be utilized in robust controller design methods. Our approach is based on Set Membership theory where the system’s uncertainties assumed to be unknown but bounded (UBB). Both parametric and non-parametric uncertainties have been accounted in the robust identifica...
متن کاملMimo System Identification Using Orthonormal Basis Functions
Abstract There has re ently been interest in the use of orthonormal bases for the purposes of SISO system identi ation. Con urrently, but separately, there has also been vigorous work on estimation of MIMO systems by omputationally heap and reliable s hemes. These latter ideas have olle tively be ome known as `4SID' methods. This paper is a ontribution overlapping these two s hools of thought b...
متن کاملSystem identification with generalized orthonormal basis functions
A least-squares identification method is studied that estimates a finite number of expansion coefficients in the series expansion of a transfer function, where the expansion is in terms of recently introduced generalized basis functions. The basis functions are orthogonal in 8$, and generalize the pulse, Laguerre and Kautz bases. One of their important properties is that, when chosen properly, ...
متن کاملContinuous-time subspace system identification using generalized orthonormal basis functions
This paper proposes a new subspace identification algorithm for continuous-time systems using generalized orthonormal basis functions. It is shown that a generalized orthonormal basis induces the transformation of continuoustime stochastic systems into discrete-time stochastic systems, and that the transformed noises have the ergodicity properties. With these basic observations, the standard su...
متن کاملAsymptotically optimal orthonormal basis functions for LPV system identification
A global model structure is developed for parametrization and identification of a general class of Linear Parameter-Varying (LPV) systems. By using a fixed orthonormal basis function (OBF) structure, a linearly parametrized model structure follows for which the coefficients are dependent on a scheduling signal. An optimal set of OBFs for this model structure is selected on the basis of local li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Low Frequency Noise, Vibration and Active Control
سال: 2008
ISSN: 1461-3484,2048-4046
DOI: 10.1260/026309208785844112